GAUGE DEPENDENCE OF THE EFFECTIVE AVERAGE ACTION IN EINSTEIN GRAVITY

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauge Dependence of Effective Action and Renormalization Group Functions in Effective Gauge Theories

The Caswell-Wilczek analysis on the gauge dependence of the effective action and the renormalization group functions in Yang-Mills theories is generalized to generic, possibly power counting non renormalizable gauge theories. It is shown that the physical coupling constants of the classical theory can be redefined by gauge parameter dependent contributions of higher orders in “hbar” in such a w...

متن کامل

Exact Solutions with Noncommutative Symmetries in Einstein and Gauge Gravity

We present new classes of exact solutions with noncommutative symmetries constructed in vacuum Einstein gravity (in general, with nonzero cosmological constant), five dimensional (5D) gravity and (anti) de Sitter gauge gravity. Such solutions are generated by anholonomic frame transforms and parametrized by generic off–diagonal metrics. For certain particular cases, the new classes of metrics h...

متن کامل

Critical Exponents from the Effective Average Action

We compute the critical behaviour of three-dimensional scalar theories using a new exact non-perturbative evolution equation. Our values for the critical exponents agree well with previous precision estimates.

متن کامل

Two–Connection Renormalization and Nonholonomic Gauge Models of Einstein Gravity

A new framework to perturbative quantum gravity is proposed following the geometry of nonholonomic distributions on (pseudo) Riemannian manifolds. There are considered such distributions and adapted connections, also completely defined by a metric structure, when gravitational models with infinite many couplings reduce to two–loop renormalizable effective actions. We use a key result from our p...

متن کامل

Nonholomic Distributions and Gauge Models of Einstein Gravity

For (2+2)–dimensional nonholonomic distributions, the physical information contained into a spacetime (pseudo) Riemannian metric can be encoded equivalently into new types of geometric structures and linear connections constructed as nonholonomic deformations of the Levi–Civita connection. Such deformations and induced geometric/physical objects are completely determined by a prescribed metric ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Modern Physics A

سال: 1998

ISSN: 0217-751X,1793-656X

DOI: 10.1142/s0217751x98000263